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Abstract. The concept of the ensemble Kohn–Sham hardness is introduced. It is shown that the first 
excitation energy can be given by the Kohn–Sham hardness (i.e. the energy difference of the ground-state 
lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of 
the ensemble exchange-correlation energy with respect to the weighting factor w in the limit w → 0. It is 
proposed that the first excitation energy can be used as a reactivity index instead of the hardness. 
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1. Introduction 

The concepts of chemical reactivity theory have been 
given a rigorous foundation in the density functional 
theory1–4 from Parr and collaborators.2 
 In the density functional theory the total energy E[n] 
is a unique functional of the density n. Parr et al 
consider the total energy E a function of the number 
of electrons N. The chemical potential is defined as 
the negative of the electronegativity 
 
 µ = (∂E/∂N)v = –χ. (1) 
 
It was long ago showed by Mulliken5 that the elec-
tronegativity of a species can sensibly be defined as 
the average of its ionization potential I and electron 
affinity A 
 
 χM = (I + A)/2. (2) 
 
This is just the finite difference approximation to 
(1). From the variational principle of the density 
functional theory follows Sanderson’s principle:6 the 
electronegativity equalizes when two species unite to 
form a new species leading to a single electronegativity 
or chemical potential (the same way as in ordinary 
thermodynamics).  
 The hardness η of an electronic system is defined7 as 
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The global softness8 is the inverse of the global hardness 
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It can be easily shown2 that the global hardness can be 
approximated by 

 η ≈ (I – A)/2. (5) 

It can be further approximated by the Kohn–Sham 
hardness, that is the energy difference of the lowest 
unoccupied and the highest occupied molecular orbitals: 

 η j 1
KS LUMO HOMO2 ( ).η ε ε= −  (6) 

Electronegativity, hardness and softness have proved 
to be very useful quantities in the chemical reactivity 
theory. Nevertheless, the definitions above cannot be 
applied with complete rigour. For example, there are 
several different definitions for the chemical potential 
within the present density functional framework.9 In 
their recent paper, Zahariev and Wang9 have proved 
that at an integer electron number, for any external 
potential converging to the same constant at infinity in 
all direction, the value of the chemical potential is 
the negative of the first ionization energy 

 µ = –I. (7) 

They also rigorously derived within the framework of 
zero-temperature Fock-space density functional the-
ory that the chemical potential is equal to the Lagran-
gian multiplier used to constrain the normalization of 
the density in the traditional density functional theory. 
 As it was emphasized by Cohen in his important 
contribution to ‘Strengthening the Foundation of 
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Chemical Reactivity’,10 the fact that finite systems 
have discrete energy spectra has important conse-
quences for the reactivity theory. The values of soft-
ness and hardness are either zero or infinity. 
 In this paper, based on the ensemble theory of ex-
cited states, a relationship between excitation energy 
and hardness is derived. It is proposed that the first 
excitation energy can be used as a reactivity index 
instead of the hardness. Finally, the concept of the 
ensemble Kohn–Sham hardness is introduced. 

2. Ensembles of excited states 

First the theory of excited states for ensembles by 
Gross et al12 is reviewed. The first rigorous generaliza-
tion of time-independent density functional theory for 
excited states was given by Theophilou.11 His theory 
was enlarged into the theory of ensembles of excited 
states by Gross et al12. 
 The eigenvalue problem of the Hamiltonian H

∧
 can be 

given by 
 
 H

∧
ψk = Ekψk  (k = 1, … ,M). (8) 

 
From the energy eigenvalues, 
 
 E1 ≤ E2 ≤ … , (9) 
 
the ensemble energy, 
 

 E =
1

,
M

k k
k

w E
=

∑  (10) 

 
can be constructed, where w1 ≥ w2 ≥ wM ≥ 0. The 
generalized Rayleigh–Ritz variational principle is 
valid12 for the ensemble energy. Therefore the general-
ized Hohenberg–Kohn-theorems can be derived. (i) 
The external potential v(r) is determined within a trivial 
additive constant, by the ensemble density n defined 
as 
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(ii) For a trial ensemble density n′(r) such that 

 n′(r) ≥ 0, (12) 

and 
 
 ∫ n′(r)dr = N, (13) 

  E[n] ≤ E[n′], (14) 

 
i.e. the ensemble functional E takes its minimum at the 
correct ensemble density n. 
 Kohn–Sham equations can also be derived for the 
ensemble: 
 

 21
KS2[ ( ; , )] ( ) ( ).w w w

w i i iw n φ ε φ− ∇ + =r r rv  (15) 
 

The ensemble Kohn–Sham potential 
 
 vKS(r; w, nw) = v(r) + vc(r; w, nw) + vxc(r; w, nw) 

 (16) 
 
is a sum of the external, the ensemble Coulomb and the 
ensemble exchange-correlation potentials. The ensem-
ble Kohn–Sham equations (15) have exactly the 
same form as the ground-state equations. The differ-
ence is in the fact that because of (11) there are non-
integer occupation numbers also and the ensemble 
exchange-correlation potential depends on the 
weighting factors as well. 
 Let us consider an ensemble constructed from the 
ground and the first excited states. The first excita-
tion energy is given by12 
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where g1 and g2 are the degeneracies of the ground 
and the first excitation states and 
 
 0 ≤ w ≤ 1/g1. (18) 
 
Exc is the ensemble exchange-correlation energy. In-
troducing the notation, 
 
  ε–w

N = εw
j , if N ≤ j ≤ N – 1 + g1 (19) 

 
and 
 
 ε– w  

N+1 = εw
j , if N + g1 ≤ j ≤ N – 1 + g1 + g2, (20) 

 
the first excitation energy has the form 
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If both states are non-degenerate (g1 = g2 = 1), 
 
 ε

–w
N = εw

N (22) 
 
and 
 
 ε

– w  
N+1 + εw  

N+1. (23) 
 
Consequently, the excitation energy takes the form 
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In the ground state of the N-electron system the low-
est N one-energy levels are occupied in the Kohn–
Sham scheme. The first excitation corresponds to 
raising an electron from the highest occupied level 
to the lowest unoccupied level N + 1. The first exci-
tation energy is given by the difference of these en-
ergy levels plus an extra term arising from the w-
dependence of the ensemble exchange-correlation 
energy. All quantities in the right-hand side of (21) 
and (24) should be calculated with the ensemble 
density nw. 

3. Hardness and excitation energy 

Let us now take the limit w → 0 in (21). Then the first 
excitation energy takes the form 
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in the degenerate case and 
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in the non-degenerate case. That is, the first excitation 
energy can be given by the energy difference of the 
ground-state lowest unoccupied and highest occu-
pied levels plus an extra term coming from the par-
tial derivative of the ensemble exchange-correlation 
energy with respect to the weighting factor w in the 
limit w → 0. 
 Comparing (6) and (24) we immediately obtain 
that 
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That is, the first excitation energy is the sum of the 
Kohn–Sham hardness and the partial derivative of the 
ensemble exchange-correlation energy with respect 
to the weighting factor w in the limit w → 0. 
 Now, we introduce the concept of the ensemble 
Kohn–Sham hardness, 
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and 
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for the degenerate and the nondegenerate cases re-
spectively. Then the first excitation energy is given 
by 
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Equations (27) and (30), that establish a relationship 
between the first excitation energy and the Kohn–
Sham hardness, are the main results of this paper. 
 The excitation energy is often approximated by 
the difference 
 
 E2 – E1 ≈ ε 0   

N + 1 – ε0
N = 2ηKS. (31) 

 
Generally, it does not lead to an adequate estima-
tion, as the last term in (27) cannot be neglected. 

4. Discussion 

The total energy should be considered as a function 
of the electron number N. There are derivative dis-
continuities, however. ∂E = ∂N does not exist for in-
teger N. Only, one-sided functional derivatives exist: 
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Equations (3), (32) and (33) lead to 
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Table 1. Experimental first excitation energy and hard-
ness for some neutral atoms (in eV). 

Atom Transition E2 – E1 2η = I – A 
 

Be 2s → 3s 6⋅62 9⋅00 
B 2p → 3s 4⋅97 8⋅02 
C 2p → 3s 7⋅48 10⋅00 
N 2p → 3s 10⋅34 14⋅46 
O 2p → 3s 9⋅50 12⋅16 
F 2p → 3s 12⋅87 14⋅02 
Na 3s → 3p 2⋅10 4⋅46 
Mg 3s → 3p 3⋅53 7⋅80 
Al 3p → 4s 3⋅14 5⋅54 
Si 3p → 4s 5⋅01 6⋅76 
Cl 3p → 4s 9⋅05 9⋅36 

 
where N0 denotes integer electron number. So as it was 
emphasized by Cohen,10 for systems with discrete 
spectra the concept of hardness cannot be used for 
an integer number of electrons. Therefore, instead of 
the original definition of the hardness, approxima-
tions (5) and (6) are applied and proved to be very 
useful in several applications. 
 Now we propose another possibility. The first excita-
tion energy is well defined and it can be an appropri-
ate reactivity index instead of the hardness. From 
(5), (6), (27) and (31) we can suppose that 

 E2 – E1 ≈ 2η. (35) 

Of course, this approximation cannot be directly checked 
as the derivative in (3) at integer number of elec-
trons N does not exist. Only the approximations (5) 
and (6) are available. Then we can also suppose that 

 E2 – E1 ≈ I – A. (36) 

Contrary to relation (35), approximation (36) can be 
checked, as experimental values are available. Table 
1 presents experimental values of the first excitation 
energy and the difference I – A for some atoms.2 It 
shows that approximation (36) is very crude. The 
first excitation energy is systematically smaller than 
I – A. Therefore the extra term in (27) has an impor-
tant negative contribution. 
 Turning to the concept of ensemble hardness, we 
can immediately see from (30) that ηw 

KS and conse-
quently the derivative of the ensemble exchange-
correlation energy with respect to the weighting fac-
tor w are different for different values of w. How-
ever, it can happen that there exists a w0 for which 
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Then 
 
 E2 – E1 = 2ηw0

KS. (38) 
 
It was found13 that using a simple local ensemble 
potential there exist such a w0 for some atoms. The 
value of w0 is 0⋅0114 for F, 0⋅113 for Na and 0⋅0178 
for Cl, respectively, At w0 the ensemble hardness 
gives directly the excitation energy by virtue of (38). 
 In conclusion, we can state that there is an intimite 
relationship between the Kohn–Sham hardness and 
the first excitation energy. The ground-state Kohn–
Sham hardness systematically overestimates the first 
excitation energy. The ensemble Kohn–Sham hardness, 
on the other hand, can be rather close or even equal 
to the first excitation energy. 
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